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Introduction

The term structure of interest rates, or the TSIR, 
can be defined as the relationship between the 
yield on an investment and the term to maturity 
of the investment. Many alternative assets 
such as real estate, private equity, and hedge 
fund investments are illiquid with long-term 
cash flows, without a readily available source 
for market prices. Thus, a properly estimated 
term structure of interest rates is essential for 
obtaining the intrinsic values of these assets. 
Due to the non-linear convex relationship 
between asset prices and interest rates, any 
errors in the estimation of interest rates in a 
low-yield environment have a larger impact 
on the intrinsic valuation of these assets. Thus, 
an accurate estimation of the term structure of 
interest rates assumes even greater importance 
in the current low-yield environment with a 
yield around 1% on the short end, and a 3% 
yield on the 30-year Treasury bond. Moreover, 
the TSIR is also relevant for macroeconomic 
forecasts of short-term rates, and 

implementation of monetary policy and debt 
policy by governments (see Piazzesi [2010]). 

As noted by Bliss [1997], the TSIR estimation 
requires making three important decisions. 
First, one must consider the assumptions 
related to taxes and liquidity premiums in 
the pricing function that relates bond prices 
to interest rates or discount factors. Second, 
one must choose a specific functional form to 
approximate the interest rates or the discount 
factors. Moreover, third, one must choose an 
empirical method for estimating the parameters 
of the chosen functional form. This paper 
focuses on how to estimate the default-free 
term structure of interest rates from bond data 
using three methods: the bootstrapping method, 
the McCulloch cubic-spline method, and the 
Nelson and Siegel method. Nelson and Siegel 
method is shown to be more robust than the 
other two methods. The last two methods can 
be implemented using the user-friendly Excel 
spreadsheet prepared by the authors.1
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The structure of the paper is as follows. First, we review the 
main concepts about the TSIR, such as discount functions, bond 
prices, yield to maturity, several definitions of interest rates and 
a discussion of the shape of the TSIR.  Next, we describe three 
popular term structure estimation methods and point out the 
clues for a proper usage and their limitations. 

1. The Building Blocks: Bond Prices, Spot Rates, and Forward 
Rates

The TSIR can be expressed regarding spot rates, forward rates, 
or prices of discount bonds. This section shows the relationship 
between these concepts.

1.1. The Discount Function

Under continuous compounding, the price (or present value) 
of a zero-coupon bond with a face value of $100 and a term to 
maturity of jt  years can be written as:

( )
( )

100( ) 100 100 ( )y t t
y t tP t e d t

e
−= = =

where ( )y t  is the continuously-compounded rate corresponding 
to the maturity term t . The function ( )y t  defines the 
continuously-compounded term structure based upon zero-
coupon rates. The expression ( )y t te−  is referred to as the discount 
function ( )d t . The typical shape of the discount function is shown 
in Figure 1. This function starts at 1, since the current value of a 
$1 payable today is $1, and it decreases with increasing maturity 
due to the time value of money.

If a series of default-free zero-coupon bonds exist for differing 
maturities, then it is possible to extract the term structure by 
simply inverting equation (1) to obtain ( )y t . However, due to the 
lack of liquidity and unavailability of zero-coupon bonds for all 
maturities, the term structure cannot be simply obtained by using 
zero-coupon bonds such as U.S. Treasury STRIPS.

1.2. Bond Price and Accrued Interest 

A coupon bond can be viewed as a portfolio of zero-coupon 
bonds. Using discount function given above, the present value of 
each coupon paid jt  periods from today is given by C d t j× ( )  
where C d t j× ( ) is the coupon received.  This approach can be used 
to calculate the present value of all the payments, coupons and 
face value. 

This approach gives us 0P , which is called the cash price of a 
bond, and is the price that purchaser pays when buying the 

Figure 1: The discount function

bond. However, bond prices are not quoted as cash prices.  The 
quoted prices are clean prices, which exclude the accrued interest. 
Accrued interest is the interest accumulated between the most 
recent interest payment and the present time. If 0t  denotes 
the current time, pt  denotes the date of the previous coupon 
payment, and qt denotes the date of the next coupon payment, 
then the formula for accrued interest is given as:

0 p

q p

t t
AI C

t t
 −

=   −   

and the bond’s quoted price is equal to the present value of the all 
the payments minus the accrued interest. That is,

0Quoted Price P AI= −

Computation of accrued interest requires the day count basis 
used in the market. The day count basis defines how to measure 
the number of days in a year and as well as the number of days 
between coupons. Note that it is not the cash price, but the 
quoted price that depends on the specific day count convention 
being applied. Any increase (decrease) in the accrued interest 
due to a specific day count convention used is exactly offset by a 
corresponding decrease (increase) in the quoted price so that the 
cash price remains unchanged. Since the TSIR is computed using 
cash prices, it is also independent of the day count convention 
used. Of course, it is necessary to know the day count convention 
to obtain the cash price using the quoted price and the accrued 
interest. 

1.3. Yield to Maturity

The yield to maturity is given as that discount rate that makes the 
sum of the discounted values of all future cash flows (either of 
coupons or principal) from the bond equal to the cash price of the 
bond, that is:2

1
j N

N

y t y t
j

C FP
ee × ×

=

= +∑

Note that the yield to maturity is a complex weighted average of 
zero-coupon rates. The size and timing of the coupon payments 
influence the yield to maturity, and this effect is called the coupon 
effect. In general, the coupon effect will make two bonds with 
identical maturities but with different coupon rates or payment 
frequencies have different yields to maturity if the zero-coupon 
yield curve is non-flat.  The coupon effect makes the term 
structure of yields on coupon bonds lower (higher) than the term 
structure of zero-coupon rates, when the latter is sloping upward 
(downward).

1.4. Spot Rates, Forward Rates and Future Rates

Zero-coupon rates as defined above are spot rates because 
they are interest rates for immediate investments at different 
maturities. The forward rate between the future dates 1t and 2t
is the annualized interest rate that can be contractually locked in 
today on an investment to be made at time 1t  that matures at time 

2t . The forward rate is different from the future rate in that the 
forward rate is known with certainty today, while the future rate 
can be known only in future.  

(1)

(2)

(3)

(4)

,
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Consider two investment strategies. The first strategy requires 
making a riskless investment of $1 at a future date 1t , which is 
redeemed at future date 2t  for an amount equal to:

1 2 2 1( , )( )1 f t t t te −×

The variable 1 2( , )f t t  which is known today is defined as the 
continuously-compounded annualized forward rate, between 
dates 1t  and 2t .

Now consider a second investment strategy that requires shorting 
today (which is the same as borrowing and immediately selling) 
a $1 face value riskless zero-coupon bond that matures at time 

1t  and investing the proceeds from the short sale in a riskless 
investment maturing at time 2t . The proceeds of the short sale 
equal 1( )P t , the current price of $1 face value riskless zero-
coupon bond that matures at time 1t . This investment costs 
nothing today, requires covering the short position at time 1t  by 
paying $1, and receiving the future value of the proceeds from 
the short sale. Since both riskless investment strategies require $1 
investment at time 1t , and cost nothing today, the value of these 
investment strategies at time 2t  must be identical. That is, they 
must offer the same compounded rate of return. This observation 
can be used to calculate the forward rate that is implied by the 
term structured observed today. Therefore, the compounded 
forward rate of return between two future dates 1t  and 2t  is given 
by:

2 1
1 2 2 1

2 1

( ) ( )( , ) ( ) y t y tf t t y t t
t t
−

= +
−

The above equation implies that if the term structure of zero-
coupon rates is upward (downward) sloping, then forward rates 
will be higher (lower) than zero-coupon rates. For a flat term 
structure, zero-coupon rates and forward rates are identical and 
equal to a constant.

In general, forward rates can be computed for any arbitrary 
interval length, and each length implies a different term structure 
of forward rates. To avoid this indeterminacy, the term structure 
of forward rates is usually defined using instantaneous forward 
rates. Instantaneous forward rates are obtained when the interval 
length becomes infinitesimally small. 

Mathematically, the instantaneous forward rate ( )f t , is the 
annualized rate of return locked-in today, on money to be 
invested at a future time t , for an infinitesimally small interval.  
The instantaneous forward rates can be interpreted as the 
marginal cost of borrowing for an infinitesimal period beginning 
at time t . By the same token, the annualized time t  zero coupon 
rate can be shown to be equal to the average of all forward rates 
between now and time t :

( )
0

1( ) ,
N

i i
i

y t f t t
t =

≈ + ∆∑
The above equation gives a relationship between zero-coupon 
rates and forward rates. It implies that the zero-coupon rate for 
term t  is an average of the instantaneous forward rates beginning 

from term 0 to term t . Since averaging reduces volatility, this 
relationship suggests that forward rates should be in general more 
volatile than zero-coupon rates, especially at the longer end.3

1.5. The Shape of the Term Structure of Interest Rates

Estimation of the term structure involves obtaining zero-coupon 
rates, or forward rates, or discount functions from a set of coupon 
bond prices. Generally, this requires fitting a functional form that 
is flexible in capturing stylized facts regarding the shape of the 
term structure.  The TSIR typically takes four different shapes 
given as the normal shape, the steep shape, the humped shape and 
the inverted shape. Figure 2 shows these four typical shapes. 

The normal shape is indicative of an economy that is normally 
expanding. That is, the term structure tends to be sloping 
upwards, reflecting the fact that longer-term investments are 
riskier. A higher risk implies a higher risk premium and hence, a 
higher interest rate. The steep shape of the term structure typically 
occurs at the trough of a business cycle, when after many interest 
rate reductions by the central bank, the economy seems poised for 
a recovery in the future. The inverted shape of the term structure 
typically occurs at the peak of a business cycle, when after many 
interest rate increases by the central bank, the economic boom or 
a bubble may be followed by a recession or a depression. Finally, 
the humped shape typically occurs when the market participants 
expect a short economic recovery followed by another recession 
so that there are different expectations at different terms. It could 
also occur when moving from a normal curve to an inverted 
curved or vice versa.4

It is also worthy to highlight that whatever the shape, the TSIR 
tend to be horizontal at longest maturities. The reason for this is 
twofold. First, although investors can hold different expectations 
about the future of interest rates for the short, medium, and long 
terms, their long term their expectations are more diffused, which 
makes it difficult to establish differences between different long 
rates.  Second, risk premiums tend to be more stable for longer 
terms. This stylized fact should be considered when estimating 
the TSIR. 

2. Three Methods for Term Structure Estimation

First attempts to estimate the term structure relied on fitting 
smooth functions to the yields to maturity of bonds using 
regression analysis.  However, this approach was unsatisfactory 
due to its limitation in identifying the zero-coupon yields, and 

Figure 2: Basic shapes of the term structure

(5)

(6)

(7)
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in dealing with the coupon effect. The seminal work of J. Huston 
McCulloch in 1971 suggested a new method based on quadratic 
splines, which focused directly on estimating zero-coupon 
yields and discount factors. Much research has extended the 
work of McCulloch in the past four decades. Methods for TSIR 
estimation must find a way to approximate the spot rates, or 
the forward rates, or the discount function. This requires fitting 
a parsimonious functional form that is flexible in capturing 
stylized facts regarding the shape of the term structure. A good 
term structure estimation method should satisfy the following 
requirements:

•	 The method ensures a suitable fitting of the data.

•	 The estimated zero-coupon rates and the forward rates 
remain positive over the entire maturity spectrum.

•	 The estimated discount functions, and the term 
structures of zero-coupon rates and forward rates are 
continuous and smooth.  

•	 The method allows asymptotic shapes for the term 
structures of zero-coupon rates and forward rates at the 
long end of the maturity spectrum.

The commonly used term structure estimation methods are 
given as the bootstrapping method, the polynomial/exponential 
spline methods of McCulloch [1971, 1975] and Vasicek and Fong 
[1982], and the exponential functional form methods of Nelson 
and Siegel [1987] and Svensson [1994]. Extensions of the above 
methods are given as the error weighing models such as the 
B-spline method of Steely [1991], the penalized spline methods 
of Fisher, Nychka and Zervos [1995] and Jarrow, Ruppert, and 
Yu [2004], and the constrained B-spline method of Poletti and 
Moura [2009], among others.5 In this paper, we focus on the three 
most commonly used term structure estimation methods: the 
bootstrapping method, the McCulloch polynomial cubic-spline 
method, and the Nelson and Siegel exponential-form method.

2.1. Bootstrapping

The bootstrapping method consists of iteratively extracting zero-
coupon yields using a sequence of increasing maturity coupon 
bond prices.6 This method requires the existence of at least one 
bond that matures at each bootstrapping date. 

To illustrate this method, consider a set of K bonds that pay 
semi-annual coupons. The shortest maturity bond is a six-month 
bond, which by definition does not have any intermediate coupon 
payments between now and six months, since coupons are paid 
semi-annually. Using the 6-month zero coupon rate, the price of 
this bond is given as:

0.5 0.5
(0.5)0.5(0.5) y

C FP
e

+
=

where 0.5F  is the face value of the bond payable at the maturity of 
0.5 years, 0.5C  is the semi-annual coupon payment at the maturity, 
and (0.5)y  is the annualized six-month zero-coupon yield (under 
continuously-compounding). The six-month zero-coupon yield 
can be calculated by taking logarithms of both sides of equation 
(8), and simplifying as follows:

0.5 0.51(0.5) ln
0.5 (0.5)

F Cy
P

 +
=  

 

In order to compute the 1-year zero-coupon yield, we can use the 
price of a 1- year coupon bond as follows:

1 1 1
(0.5)0.5 (1)(1) y y

C F CP
e e

+
= +

where 1F  is the face value of the bond payable at the bond’s 
1-year maturity, 1C  is the semi-annual coupon, which is paid at 
the end of 0.5 years and 1 year, and (1)y  is the annualized 1-year 
zero-coupon yield. By rearranging the terms in equation (10) and 
taking logarithms, we get the 1-year zero-coupon yield as follows:

1 1

1
(0.5)0.5

(1) ln
(1) y

F Cy CP
e

 
 +
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 −
 

Since we already know the six-month yield, (0.5)y  from equation 
(9), this can be substituted in equation (11) to solve for the 1-year 
yield. Now, continuing in this manner, the six-month yield, (0.5)y , 
and the 1-year yield, (1)y , can be both used to obtain the 1.5-year 
yield, (1.5)y , given the price of a 1.5-year maturity coupon bond. 

Following the same approach, the zero-coupon yields of all of the 
K  maturities (corresponding to the maturities of the bonds in the 
sample) are computed iteratively using the zero-coupon yields of 
the previous maturities.  

The zero-coupon yields corresponding to the maturities that 
lie between these K  dates can be computed by using linear or 
quadratic interpolation. Generally, about 15 to 30 bootstrapping 
maturities are sufficient in producing the whole term structure 
of zero-coupon yields. Instead of solving the zero-coupon yields 
sequentially using an iterative approach as shown above, one can 
used the matrix approach to solve for all K  zero coupon rates 
simultaneously. Appendix 1 discusses this approach.

The bootstrapping method has two main limitations. First, 
since this method does not perform optimization, it computes 
zero-coupon yields that exactly fit the bond prices.  This leads to 
over-fitting since bond prices often contain idiosyncratic errors 
due to lack of liquidity, bid-ask spreads, special tax effects, etc., 
and hence, the term structure will not be necessarily smooth as 
shown in Figure 2.  Second, the bootstrapping method requires 
ad-hoc adjustments when the number of bonds is not the same 
as the bootstrapping maturities, and when cash flows of different 
bonds do not fall on the same bootstrapping dates.7 The next 
two methods overcome these difficulties by imposing specific 
functional forms on the term structure.

2.2. Cubic-spline method

Consider the relationship between the observed price of a coupon 
bond maturing at time mt , and the discount function. As 
discussed before, the price of this bond can be expressed as the 
present value of each coupon payment using zero coupon rates:

(8)

(9)

(10)

(11)



71
A Review of Term Structure Estimation Methods

1
( ) ( )

m

m j j
j

P t CF d t ε
=
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where jCF  is the total cash flow from the bond (i.e., coupon, face 
value, or both) on date jt  ( j  = 1,2,…,m).  Since bond prices 
are observed with idiosyncratic errors, we need to estimate some 
functional form for the discount function that minimizes these 
errors. We face two problems in doing this. First, the discount 
functions may be highly non-linear, such that we may need a 
high-dimensional function to make the approximation work. 
Second, the error terms in equation (12) may increase with the 
maturity of the bonds, since longer maturity bonds have higher 
bid-ask spreads, lower liquidity, etc. Due to these, estimation 
of the discount function using approaches such as least squares 
minimization, generally fits well at long maturities, but provides 
a very poor fit at short maturities (see McCulloch [1971] and 
Chambers Carleton and Waldman [1984]). 

The spline method addresses the first issue by dividing the term 
structure in many segments using a series of points that are called 
knotpoints. Different functions of the same class (polynomial, 
exponential, etc.) are then used to fit the term structure over 
these segments. The family of functions is constrained to be 
continuous and smooth around each knot point to ensure the 
continuity and smoothness of the fitted curves, using spline 
methods.  McCulloch pioneered the application of splines to 
term structure estimation by using quadratic polynomial splines 
in 1971 and cubic polynomial splines in 1975. The cubic spline 
method remains popular among practitioners and is explained in 
Appendix 2.

As regard limitations, a potential criticism of the cubic-spline 
method is the sensitivity of the discount function to the location 
of the knotpoints. Different knotpoints result in variations in the 
discount function, which can be sometimes significant. Also, too 
many knotpoints may lead to overfitting of the discount function.   
So, one must be careful in the selection of both the number and 
the placing of the knotpoints.  

Another shortcoming of cubic-splines is that they give 
unreasonably curved shapes for the term structure at the long end 
of the maturity spectrum, a region where the term structure must 
have very little curvature. Additionally, the OLS regression used 
for the estimation of the parameters in equation (26), gives the 
same weights to the price errors of the bonds with heterogeneous 
characteristics, such as liquidity, bid-ask spreads, maturity, etc.  
Other functions can be used for optimization to overcome this 
limitation but at the cost of precluding the use of OLS techniques.7 

Finally, the choice of polynomials as basis functions is also 
controversial. It is argued that the shape of the discount function 
estimated using cubic splines is usually reasonable up to the 
maturity of the longest bond in the dataset but tend to be positive 
or negative infinity when extrapolated to longer terms. This 
implies that it is possible to generate unbounded positive or 
negative interest rates. Moreover, although the use of polynomial 
splines moderates the wavy shape of simple polynomials around 
the curve to be fitted, this shape might not disappear completely 
and hence, the fitted discount function might wave around the 
real discount function introducing a significant variability in 
both spot and forward rates. Despite these shortcomings, the use 

of polynomial splines to estimate the TSIR is widespread in the 
financial industry.  

2.3. Nelson and Siegel Model

An alternative approach that overcomes many of the 
shortcomings of spline techniques is the methodology of Nelson 
and Siegel. The Nelson and Siegel [1987] model uses a single 
exponential functional form over the entire maturity range.  
Nelson and Siegel suggest a parsimonious parameterization of the 
instantaneous forward rate, which is then used to give a simple 
representation of the zero coupon curve:

( ) ( )/ /
1 2 3 3( ) 1 t ty t e e

t
β ββα α α α− −= + + − −

The Nelson and Siegel model is based upon four parameters.  
These parameters can be interpreted as follows:

•	 1α + 2α  is the instantaneous short rate, i.e., 1α + 2α  
= (0)y  = (0)f .

•	 1α  is the consol rate. It gives the asymptotic value of 
the term structure of both the zero-coupon rates and 
the instantaneous forward rates, i.e., 1α  = ( )y ∞  = 

( )f ∞ .

•	 The spread between the consol rate and the 
instantaneous short rate is – 2α , which can be 
interpreted as the slope of the term structure of zero-
coupon rates as well as the term structure of forward 
rates. 

•	 3α  affects the curvature of the term structure over the 
intermediate terms.  When 3α  > 0, the term structure 
attains a maximum value leading to a concave shape, 
and when 3α  < 0, the term structure attains minimum 
value leading to a convex shape. 

•	 β  > 0, is the speed of convergence of the term 
structure towards the consol rate. A lower β  value 
accelerates the convergence of the term structure 
towards the consol rate, while a higher β  value 
moves the hump in the term structure closer to longer 
maturities. 

Figure 3 illustrates how the parameters 1α , 2α , and 3α , affect 
the shape of the term structure of zero-coupon rates (given a 

Figure 3: Influence of the alpha parameters of Nelson and 
Siegel on the term structure of zero-coupon rates

(13)

(12)
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constant β  = 1). A change in 1α  can be interpreted as the 
height or parallel change, a change in 2α  can be interpreted as 
the slope change (though this parameter also affects the curvature 
change slightly), and a change in 3α  can be interpreted as the 
curvature change in the term structure of zero-coupon rates.

Figure 4 demonstrates that Nelson and Siegel method is consistent 
with a variety of term structure shapes, including monotonic and 
humped, and allows asymptotic behavior of forward and spot 
rates at the long end. For illustrative purposes, the consol and 
instantaneous rates have been set at the same level.

The discount function associated with the term structure in (13) 
can be used to obtain a pricing formula for a coupon-bearing 
bond, as follows:

( )( )/ /
1 2 3 31

1
( )

t tj j
j j

m t e t e

m j
j

P t CF e
β βα β α α α− −

− − + − +

=

=∑

where mt  is the bond’s maturity and jCF  is the cash flow of the 
bond at time jt .

The parameters in this equation can be estimated by minimizing 
the sum of squared errors between the left hand and right hand 
sides of equation (14) subject to the following constraints:

Figure 4: Influence of the curvature and hump positioning 
parameters of Nelson and Siegel 

1

1 2

0
0

0

α
α α
β

>
+ >
>

The first constraint in equation (15) requires that the consol 
rate remain positive; the second constraint requires that the 
instantaneous short rate remain positive; finally, the third 
constraint ensures the convergence of the term structure to the 
consol rate.

Since the bond pricing equation (14) is a non-linear function, the 
four parameters are estimated using a non-linear optimization 
technique. As non-linear optimization techniques are usually 
sensitive to the starting values of the parameters, these values 
must be carefully chosen.

Despite this computational difficulty, the Nelson and Siegel 
model, and its extended version given by Svensson [1994], have 
a prominent position among term structure estimation methods. 
The smoothness of the estimated curves for both spot rates and 
forward rates, the asymptotic behavior of the term structure over 
the long end, and their robustness to outliers and errors in market 
data are the main advantages these methods compared to spline 
methods. In fact, as reported in BIS [2005], most Central Banks 
use these methods for term structure estimation. Also, in recent 
years, these models are attracting the interest of researchers in 
the area of interest modelling and portfolio risk management. 
Matzner-Løber and Villa [2004] and Diebold and Li [2006], for 
example, reinterpret them as modern three-factor models of 
level, slope and curvature factors in the most pure tradition of 
Litterman and Scheinkman [1991] and Bliss [1997] and obtain 
empirical evidence in favor of them. Moreover, Christensen, 
Diebold and Rudebush [2011] provide theoretical foundations 
for the model by obtaining the affine arbitrage-free dynamic term 
structure version of the model, which only differs in the existence 
of a yield-adjustment term, and Krippner [2013] shows that 
Nelson and Siegel model can be interpreted from the perspective 
of Gaussian affine term structure models. Finally, Gürkaynak, 
Sack and Wright [2007] provide the estimates of the US TSIR 
at a daily frequency from 1961 to present time using the Nelson 
and Siegel specification for the period before 1980 (due to the 
lack of long term bonds) and the extension of Svensson [1994] 
afterwards.

3. Conclusion

Interest rates play a central role in valuation of financial assets 
and for making macroeconomic policy. However, they are not 
directly observable, and should be estimated from the market 
prices of government securities with different maturities. Many 
alternative assets such as real estate, private equity, and hedge 
fund investments are illiquid with long-term cash flows, without 
a readily available source for market prices. Thus, a properly 
estimated term structure of interest rates is essential for obtaining 
the intrinsic values of these assets. In the current low-yield 
environment, an accurate estimation of the term structure of 
interest rates assumes even greater importance due to the non-
linear convex relationship between asset prices and interest rates. 
This paper focuses on three commonly used term structure 

(14)

(15)
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methods, given as the bootstrapping method, the McCulloch 
cubic spline method and the Nelson and Siegel method. We give 
a mathematically rigorous illustration, explaining the foundations 
of the methods, deriving the main equations, and pointing out the 
advantages and disadvantages of each method.

Appendix 1

The following matrix approach can be used for obtaining a 
direct solution for the bootstrapping method. Consider K bonds 
maturing at dates 1t , 2t , …, Kt , and let itCF  be the total cash 
flow payments of the ith (for i = 1,2,3,…,K) bond on the date t  
(for t  = 1t , 2t , …, Kt ).  Then the prices of the K bonds are given 
by the following system of K simultaneous equations:

1

1 2

1 2

11 1

2 22 2

0 0( ) ( )
0( ) ( )

( ) ( )
K

t

t t

K KKt Kt Kt

CFP t d t
CF CFP t d t

P t d tCF CF CF

    
    
    =     
         





 

   



Note that the upper triangle of the cash flow matrix on the right-
hand side of equation (16) has zero values.  By multiplying both 
sides of equation (16) by the inverse of the cash flow matrix, the 
discount functions corresponding to maturities 1t , 2t ,..., Kt  can 
be computed as follows:
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The above solution requires that the number of bonds equals the 
number of cash flow maturity dates.8 The zero-coupon rates can 
be computed from the corresponding discount functions using 
equation (1).  

Appendix 2

Consider a set of K bonds with maturities of 1t , 2t ,..., Kt . years.  
The range of maturities is divided into s-2 intervals defined by s-1 
knot points 1T , 2T ,..., 1sT − , where 1 0T =  and 1s KT t− = . A cubic 
polynomial spline of the discount function ( )d t  is defined by the 
following equation:

1
( ) 1 ( )

s

i i
i

d t g tα
=

= +∑
where 1( )g t , 2 ( )g t ,..., ( )sg t define a set of s basis piecewise cubic 
functions and 1α ,..., sα  are unknown parameters that must be 
estimated. 

Since the discount factor for time 0 is 1 by definition, we have:

(0) 0 1,2, ,ig i s= = 

The continuity and smoothness of the discount function within 
each interval is ensured by the polynomial functional form of 
each ( )ig t . The continuity and smoothness at the knotpoints is 
ensured by the requirement that the polynomial functions defined 
over adjacent intervals ( 1iT − , iT ) and ( iT , 1iT + ) have a common 

value and common first and second derivatives at iT . The above 
constraints lead to the following definitions for the set of basis 
functions 1( )g t , 2 ( )g t ,..., ( )sg t :
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Substituting equation (18) into equation (12), we can rewrite the 
price of the bond maturing at date mt  as follows: 

1 1
( ) 1 ( )

m s

m j i i j
j i

P t CF g tα ε
= =

 = + + 
 

∑ ∑

By rearranging the terms, we obtain:
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The estimation of the discount function requires searching of 
the unknown parameters, 1α , 2α ,…, sα , that minimizes the 
sum of squared errors across all bonds. Since equation (22) is 
linear with respect to the parameters 1α , 2α ,…, sα , this can be 
achieved by an ordinary least squares (OLS) regression.

The above approach uses 2s −  number of maturity segments, 
1s −  number of knotpoints, and s  number of cubic polynomial 

functions.  An intuitive choice for the maturity segments may be 
short-term, intermediate-term, and long-term, which gives three 
maturity segments of 0 to 1 years, 1 to 5 years, and 5 to 10 years, 
four knot points given as, 0, 1, 5, and 10 years, and five cubic 
polynomial functions.   

McCulloch recommends choosing knotpoints such that there are 
approximately equal number of data points (number of bonds’ 
maturities) within each maturity segment. Using this approach, 
if the bonds are arranged in ascending order of maturity, i.e., 

1 2 3t t t≤ ≤ ... Kt≤ , then the knot points are given as follows:
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where h  is an integer defined as:
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and the parameter θ  is given as:

( )1
2

i K
h

s
θ

−
= −

−

McCulloch also suggests that the number of basis functions may 
be set to the integer nearest to the square root of the number of 
observations, that is:

s Round K =  

This choice of s  has two desired properties. First, as the number 
of observations (bonds) increases, the number of basis functions 
increases.  Second, as the number of observations increases, the 
number of observations within each interval increases, too.

Footnotes

1. The software is available at www.fixedincomerisk.com/web/
software.html clicking on the link IRR 1. A Practical Guide to 
Term Structure Estimation with Excel in the Guides Software 
section. 

2. When compounding is discrete, each exp(yt) is replaced by 
( )1 / tky k+ . Since cash price is used in equation (4), sometimes 
the discount rate is also called the “adjusted” yield to maturity. 

3. An excellent visual exposition of the difference in the volatilities 
of the zero-coupon yields and those of the instantaneous forward 
rates is given in the excel file TSIRmovie.xls available at  
www.fixedincomerisk.com/web/software.html clicking on the link 
Term Structure Movie.

4. The shape of the term structure is also explained by other 
variables not related to expectations such as liquidity premium, 
market segmentation, etc. Alternative term structure hypotheses 
have assigned different roles to these variables. For a brief 
discussion about the main hypothesis, see Nawalkha, Soto and 
Beliaeva [2005], pp. 52-55. 

5. The method used to estimate the TSIR not only affects these 
estimates, but also any data derived from them. Diaz, Jareño and 
Navarro [2011] report this for estimates of interest rate volatility. 

6. Usually, not all the bonds that trade in the market at a given 
time are used for the estimation of the TSIR.  The bond selected 
must cover a wide spectrum of maturities, should have an enough 
degree of liquidity and their prices shouldn’t incorporate high 
distortions due to tax effects or other market frictions.  Usually, 
these requirements are fulfilled by the establishment of filtering 
criteria for determining the bonds that qualify for inclusion in the 
sample.

7. In fact, there are many alternative error-weighing schemes 
which might lead to more robust estimates of the term structure. 
For example, Bliss [1997] suggests weighting each bond price 
error by the inverse of the bond’s duration as a way to improve 
the fitting of long interest rates, which might be poor. This is 
due to the fact that in absence of a weighting scheme for pricing 
errors, the quality of the fit of the term structure decreases with 
maturity. To understand this, consider the relationship between 
prices, yields and maturities. A same change in price implies a 
much greater change in yield in short-term bonds compared to 
long-term bonds. Therefore, following a price error minimization 
criterion in the estimation will make interest rates corresponding 

to long-term bonds to be over-fitted at the expense of shorter-
term interest rates. Other approaches include the use of penalty 
functions, as in Fisher, Nychka and Zervos [1995] or Jarrow, 
Ruppert, and Yu [2004].

8. For example, when two or more bonds mature on the same 
bootstrapping maturity, the estimated spot rates resulting from 
using each of these bonds are usually averaged. In the opposite 
case, when no bond exists at a required bootstrapping maturity, 
a common practice is to estimate a par yield curve (that is, the 
yield to maturities of bond priced at par) using simple regression 
models that make the yields to maturity on current bonds depend 
on a series of bond characteristics including the coupon rate and 
the time to maturity. Then, the yields on par bonds are estimated 
by assuming that the coupon rate of each bond equals its yield to 
maturity.
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