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Introduction

One common complaint concerning quantitative equity 

strategies is that they rely too heavily on standard risk 

models such as Barra or Axioma.  Ostensibly this means 

risk metrics computed using these tools, most notably 

portfolio volatility and tracking error, are inaccurate if the 

future behavior of equities is not properly characterized by 

the model.  This could result in exposure to considerably 

more risk than had been otherwise anticipated or desired.

While risk models have historically performed quite well, 

there have been periods when these models have failed to 

make reliable predictions.  Although risk model errors are 

an unfortunate reality, in this article we show that not all 

portfolios are equally sensitive to these misspecifications.  

In particular, we demonstrate that, all else being equal, 

portfolios with higher active share are much more sensitive 

to model errors than those with lower active share.  

Therefore, confidence bands around risk metrics for high 

active share equity products are larger and, as a result, we 

have less faith in their accuracy.

Model Errors

Most risk models are comprised of two basic pieces: a set 

of factor exposures for each individual stock and a factor 

covariance matrix.  With these two pieces in hand we 

can compute the expected volatility of a portfolio and/

or the expected tracking error of the portfolio against a 

benchmark index.  Expected volatility is computed as:

( ) ( )′′Σ′= fwfwPσ (1)

Where Pσ is the volatility of the portfolio, w is a vector of 

portfolio weights, f is a matrix of factor exposures, andΣ is 

the factor covariance matrix.  We can also compute 

tracking error as:

( ) ( )′′Σ′= fdfdTEσ (2)

Where TEσ is the portfolio tracking error and d is a vector 

of active weight deviations of the portfolio from a bench-

mark index.

Perhaps the most important risk model error is 
misspecification of the factor covariance matrix, such that 
the matrix MΣ actually used in the model is not equal to the 
realized covariance matrix RΣ .  If this is the case, both 
portfolio volatility and tracking error estimates are biased.  
For example, the degree to which actual tracking error 
deviates from the risk model estimate is:

( )( )( )′′Σ−Σ′=∆ fdfd MRTEσ (3)

For simplicity we can define the change matrix 

MRC Σ−Σ=Σ such that:

( )( )( )′′Σ′=∆ fdfd CTEσ             (4)

And the factor deviation as fd ′=δ and move the square to 
the left hand side such that:

( )δδσ ′Σ=∆ CTE
2 (5)

Since most risk models are designed such that factors are 
uncorrelated we note that RΣ , MΣ and hence CΣ will have 
no non-zero off-diagonal elements.  We can now write the 
above equation as simply:

∑
=

∆=∆
N

i
iiTE

1

222 δσσ (6)

which is just the sum of the squared factor deviations times 
the change in their respective factor variances.  Since

fd ′=δ and f remains unchanged, for any non-zero 
variance change 2

iσ∆ , the squared change in tracking error 
2
TEσ∆ depends only on the square of the active weight 

vector d .  

Equation 6 shows unambiguously that tracking error 
inaccuracies are magnified as the squared values of active 
weights are increased.  This is directly equivalent to stating 
that tracking error changes are magnified as active share 
increases, since an increase in active share will always result 
in an increase in the sum of squared active weights.

Simulation

To confirm our assertion, we constructed a simple Monte 
Carlo simulation to study what happens to tracking 
error as the factor covariance matrix is perturbed.  These 
perturbations are intended to reflect misspecifications in 
the covariance matrix and we will measure inaccuracies in 
tracking error from these misspecifications across a range 
of different active share levels.  As we will see, tracking error 
inaccuracies rise polynomially with active share.
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For each active share increment of 0.1 between the 

theoretical minimum of 0 and the maximum of 1.0 we 

generate 10,000 iterations.  Each iteration models MΣ as an 

identity matrix and RΣ as an identity matrix with random, 

normally-distributed perturbations with mean of zero and 

standard deviations as described below.  Factor exposures to 

three common factors (meant to represent the Fama French 

factors for beta, value, and size) are also simulated as 

random draws from a standard normal distribution.  

The starting active weights are also chosen randomly, but 

are bound by the prescribed level of active share.  These 

active weights and their corresponding factor exposures are 

then used to compute expected tracking error using MΣ
and realized tracking error using RΣ .  The difference 

between these two measures is saved and the standard 

deviation of these differences is then computed following 

completion of all iterations.  These standard deviations 

define the confidence intervals around our model tracking 

error estimates.  For a perturbation standard deviation of 

0.01, the confidence intervals are shown in Exhibit 1.

Partial results for perturbation standard deviations of 0.01 

and 0.02 are detailed in Exhibit 2.  We base our analysis 

on an expected tracking error of 3% and show the 95% 

upper bound on realized tracking error as active share is 

increased.  It is clear that at low levels of active share, errors 

in the risk model have very little impact on measured versus 

realized tracking error.  However, as active share increases 

the errors are magnified such that realized tracking error 

could be significantly different from what was anticipated.

Are the 1% and 2% levels of perturbation realistic?  The 

1% value corresponds to an expected change in factor 

variance of about 10% and 2% to an expected change in 

factor variance of roughly 14% — not at all unlikely from a 

historical perspective. It seems that our concern about the 

reliability of high active share risk metrics is warranted.

While we have focused on perturbations of the factor 
covariance matrix, we get very similar results when we 
perturb the individual stock factor exposures.  Since the 
matrix f is simply a multiplier on the deviation vector d , 
we can clearly see how larger active shares once again 
produce significant biases in risk metric estimates when 
factor exposures are misspecified.  Importantly, note that 
these errors are multiplicative and not additive.  If both the 
factor covariance matrix and the factor exposures are 
misspecified, then the confidence interval around risk 
metrics is even more extreme.

Finally, we note that errors in either the factor covariance 
matrix or the factor loadings are directly synonymous with 
errors in the individual stock return covariance matrix.  To 
illustrate this simply, note from Equation 2 that we can use 
the factor covariance matrixΣ and individual stock factor 
loadings f to recover the covariance matrix of individual 
stock returns we’ll call where:

		  (7)

Individual Factor Misspecification

Up until now, we have assumed risk model errors are 
equally likely for any factor. In other words, misspecification 
of factor loadings or factor covariances are, for example, just 

as probable for size as they are for value or beta. 
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Exhibit 1: Confidence Bounds
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Exhibit 2: Perturbed Confidence Bounds Under

Expected Tracking Error 95% Upper Confidence Bound @ 1% Peturbation

95% Upper Confidence Bound @ 2% Peturbation

Exhibit 1 Confidence Bounds
Source: BARRA and author’s calculations

Exhibit 2 Perturbed Confidence Bounds Under
Source: BARRA and author’s calculations
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We know, however, that this is not the case and the 
likelihood of errors in a specific factor increases as its return 
volatility becomes less stable or less consistent through 
time. If factor volatilities are changing, then estimates of 
factor covariances and loadings are probably biased. 

We can get a rough gauge of factor return stability by 
measuring how its volatility changes through time.  This 
measure, known as the “volatility of the volatility” or “vol. of 
the vol.,” is simply the annual standard deviation of rolling 
12-month return volatilities. The higher the “vol. of the 
vol.” the more the factor return volatility changes over time 
and the less confidence we have in risk model components 
associated with that factor.   

Exhibit 3 details the “vol. of the vol.” estimates for several 
BARRA risk factors.  These figures were calculated from 
January 1974 to December 2014 and show that different 
factors do indeed have different “vol. of vol.” measures. The 
particularly high “vol. of vol.” for momentum and volatility 
are strongly intuitive. Numerous studies have highlighted 
the temporal inconsistency of equity volatilities and 
demonstrated that the volatility of momentum is equally 
episodic.

These results are confirmed by examining the historical 

time series of factor standard deviations from the BARRA 

covariance matrices themselves. From Exhibit 4 it is clear 

that few of the factors have standard deviations that are 

consistent through time.  As with our previous analysis, 

volatility and momentum show the highest degree 

of instability, with standard deviations that fluctuate 

between 30% and 100%.  More importantly, it shows our 

perturbation assumptions in our Monte Carlo study are 

entirely realistic.

Another measure we can use to assess the inconsistency of 

factor volatility is skewness. In this case, skewness measures 

the relative frequency of volatility spikes within the factor 

returns.  The higher the skewness, the more likely a factor 

is to have a volatility spike and, hence, the more likely the 

factor will have inconsistent volatility.  Exhibit 4 shows that 

momentum and volatility are particularly prone to volatility 

spikes.  A histogram of momentum volatilities is shown 

in Exhibit 5, which clearly suggests a long right hand tail 

(strong positive skewness) to the distribution such as that 

approximated by a lognormal fit. 

These findings suggest that portfolios targeted as specific 

factors, particularly high momentum and high volatility 

(i.e., high beta), are more exposed to factor model 

misspecifications and, hence, the confidence bands around 

their risk metrics are particularly wide. Fundamental equity 

strategies that typically have a high active share along with 

a relatively high exposure to momentum are particularly 

prone to risk metric bias.

1In statistics this phenomenon is known as heteroskedasticity.
2Tests for heteroskedasticity were also conducted using the Breush-Pagan (1979), Breusch-Pagan-Koenker modification 
(1980) and White (1980) tests.  All factors were found to be heteroskedastic with the exception of Value.
 Skewness is defined as the third central moment about the mean: ( )
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BARRA Factor
Annualized 
Vol. of Vol. Skew

Momentum 2.6% 1.97

Volatility 2.5% 1.51

Size 1.0% .087

Earnings Yield 0.9% 1.88

Value 0.6% 1.34

Dividend Yield 0.6% 0.92

Leverage 0.5% 1.16

Earnings Variability 0.5% 0.90

Growth 0.5% 0.09

Exhibit 3 Factor Vol. of Vol. 1974 to 2014
Source: BARRA and author’s calculations
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Exhibit 4:  Barra Factor Standard Deviation
12/1972 to 12/2014
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Exhibit 5 Distribution of Momentum Volatilities
Source: BARRA and author’s calculations

Exhibit 4 BARRA Factor Standard Division
Source: BARRA and author’s calculations
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Misspecification of Correlations

We mentioned previously that most risk models are 
designed such that factors are uncorrelated and, hence, RΣ , 

MΣ ,and CΣ will have no non-zero off-diagonal elements.  
While this assumption typically holds, there can be periods 
in which off-diagonal covariances are non-zero which can 
also influence tracking error inaccuracies.  To see this we 
can rewrite Equation 6 with covariance terms as:

( )∑∑
≤<≤=

∆+∆=∆
Nji

jiji

N

i
iiTE xx

1

22

1

222 ,cov2 δδδσσ (8)

Where ix and jx represent the return series of individual 
factors i and j used to compute MΣ . Note that, once again,  
for any non-zero covariance change ( )ji xx ,cov∆  the 
squared change in tracking error 2

TEσ∆ depends only on the 
square of the active weight deviation id (or jd ) since

iii fd=δ and if remains unchanged. 

Exhibit 6 shows the average rolling 24 month pair-wise 
correlation among the 13 Barra factor return series.  
Although the average correlation is approximately zero 
over time, there are distinct periods where correlations and 
hence covariances are significantly positive.  For example, 
between July of 2007 and August of 2008, the average 
pairwise correlation jumps from 0.00 to more than 0.10.  
Although this is a relatively small correlation in absolute 
terms, it represents a significant change in covariances that 
can influence tracking error estimates materially.  Note that 
most correlation spikes occur in periods of recession where 
asset correlations in general tend to increase. 

Like individual factor volatilities, misspecification of factor 
covariances causes tracking error changes to be magnified 
as active share increases.  Although the effect is somewhat 
less extreme than those shown in Exhibits 1 and 2, the 
impact can still be meaningful.

Conclusions

The results of this paper show:

•	 While all portfolio risk metrics are sensitive to 
errors in the risk model, some portfolios are more 
sensitive than others.

•	 The sensitivity of a portfolio to risk model errors 
rises with active share.

•	 Monte Carlo simulation shows that at realistic 
levels of risk model error the confidence bounds 
on risk metrics grow dramatically with active share 
and, therefore, these metrics may lose credibility as 
active share increases.

•	 The likelihood of risk model error depends on 
portfolio factor exposure.  For example, the higher 
the exposure to momentum and volatility factors, 
the larger the confidence band around portfolio 
risk metrics.

•	 To minimize reliance on risk models, one should 
choose an equity portfolio that meets return 
and risk objectives, but otherwise minimizes 
active share and exposure to specific factors like 
momentum and volatility. 

Exhibit 6 Average Pairwise BARRA Factor Return Correlation
Source: BARRA and author’s calculations
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Exhibit 6:  Average Pairwise Barra Factor Return Correlation
1/1975 to 12/2014
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